Passion for Innovation. Compassion for Patients.™

ASCO Highlights 2024

DAIICHI SANKYO CO., LTD.

June 3rd (US)/ 4th (JP), 2024

Forward-Looking Statements

Management strategies and plans, financial forecasts, future projections and policies, and R&D information that Daiichi Sankyo discloses in this material are all classified as Daiichi Sankyo's future prospects. These forward looking statements were determined by Daiichi Sankyo based on information obtained as of today with certain assumptions, premises and future forecasts, and thus, there are various inherent risks as well as uncertainties involved. As such, please note that actual results of Daiichi Sankyo may diverge materially from Daiichi Sankyo's outlook or the content of this material. Furthermore, there is no assurance that any forward-looking statements in this material will be realized. Regardless of the actual results or facts, Daiichi Sankyo is not obliged and does not have in its policy the duty to update the content of this material from the date of this material onward.

Some of the compounds under discussion are investigational agents and are not approved by the FDA or any other regulatory agency worldwide as a treatment for indications under investigation. Efficacy and safety have not been established in areas under investigation. There are no guarantee that these compounds will become commercially available in indications under investigation.

Daiichi Sankyo takes reasonable care to ensure the accuracy of the content of this material, but shall not be obliged to guarantee the absolute accuracy, appropriateness, completeness and feasibility, etc. of the information described in this material. Furthermore, any information regarding companies, organizations or any other matters outside the Daiichi Sankyo Group that is described within this material has been compiled or cited using publicly available information or other information, and Daiichi Sankyo has not performed in-house inspection of the accuracy, appropriateness, completeness and feasibility, etc. of such information, and does not guarantee the accuracy thereof.

The information described in this material may be changed hereafter without notice. Accordingly, this material or the information described herein should be used at your own judgment, together with any other information you may otherwise obtain.

This material does not constitute a solicitation of application to acquire or an offer to sell any security in the United States, Japan or elsewhere.

This material disclosed here is for reference purposes only. Final investment decisions should be made at your own discretion.

Daiichi Sankyo assumes no responsibility for any damages resulting from the use of this material or its content, including without limitation damages related to the use of erroneous information.

ASCO Highlights 2024: IR conference call

Hiroyuki Okuzawa President and COO

Ken Takeshita Head of Global R&D

Mark Rutstein Head of Global Oncology Development

Content will be delivered on-demand after the meeting

1 Welcome message

2 R&D strategy

3 Highlights from ASCO 2024

4 Q&A

1 Welcome message

2 R&D strategy

3 Highlights from ASCO 2024

2 R&D strategy

3 Highlights from ASCO 2024

ASCO 2024

With over 30 presentations* across 8 assets and multiple tumor types, Daiichi Sankyo has delivered scientific outcome not limited to but highlighted by;

- Substantial progress in ENHERTU breast cancer development
 - Highlights IR call discusses DESTINY-Breast06, DESTINY-Breast03 and DESTINY-Breast07
- Steady progress in lung cancer development among DXd ADCs
 - Highlights IR call discusses DESTINY-Lung02 and TROPION-Lung02

Establish and expand DXd ADCs to address the broader spectrum of **Breast Cancer**

Pivotal studies only (not exhaustive). CPS, combined positive score; ET, endocrine therapy; HR, hormone receptor; IHC: immunohistochemistry, pCR: pathological complete response, TNBC, triplenegative breast cancer

Establish and expand DXd ADCs to address the broader spectrum of Lung Cancer

ADC: antibody-drug conjugate, AGA: actionable genomic alteration, Non-SQ: non- squamous, NSCLC: non-small cell lung cancer, SCLC: small cell lung cancer, SQ: squamous

Dato-DXd TROPION-Lung15 study

New Ph3 study in 2L EGFR mutated NSCLC for Dato-DXd monotherapy and Osimertinib combination comparing to PBC

TROPION-Lung15 study design

BICR: blinded independent central review, CTX: 5-Fluorouracil, folinic acid and cisplatin, DCR: disease control rate, DOR: duration of response, NSCLC: non small cell lung cancer, ORR: objective response rate, OS: overall survival, PBC: platinum-based chemotherapy, PFS: progression-free survival, QD: quaque die, q3w: every 3 weeks, TKI: tyrosine kinase inhibitor

10

2 R&D strategy

3 Highlights from ASCO 2024

Trastuzumab deruxtecan vs physician's choice of chemotherapy in patients with hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-low or HER2-ultralow metastatic breast cancer with prior endocrine therapy: primary results from DESTINY-Breast06

Giuseppe Curigliano

European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Italy

Additional authors: Xichun Hu, Rebecca Dent, Kan Yonemori, Carlos H Barrios, Joyce A O'Shaughnessy, Hans Wildiers, Qingyuan Zhang, Seock-Ah Im, Cristina Saura, Laura Biganzoli, Joohyuk Sohn, Christelle Lévy, William Jacot, Natasha Begbie, Jun Ke, Gargi Patel, Aditya Bardia

On behalf of the DESTINY-Breast06 investigators

DESTINY-Breast06: key takeaways

% of HR+, HER2-negative mBC

- T-DXd demonstrated efficacy in HER2-low mBC in an earlier line of treatment to DESTINY-Breast04
- Including HER2-ultralow, the proportion of patients who could benefit from T-DXd is ~85% of HR+, HER2-negative mBC after DESTINY-Breast06

In DESTINY-Breast06, T-DXd demonstrated a statistically significant and clinically meaningful PFS benefit vs TPC (chemotherapy) in HR+, HER2-low mBC after ≥1 endocrine-based therapy, with consistent results in HER2-ultralow mBC Unmet treatment need in HR+, HER2-negative mBC

Current treatment landscape and outcomes: mPFS*

*Based on data from Phase 3 registrational studies only

CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; CT, chemotherapy; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR+, hormone receptor–positive; mBC, metastatic breast cancer; mo, months; mPFS, median progression-free survival; T-DXd, trastuzumab deruxtecan

Finn RS, et al. N Engl J Med. 2016;375;1925–1936;
 Hortobagyi GN, et al. Ann Oncol. 2018;29:1541–1547;
 Johnston S, et al. NPJ Breast Cancer. 2019;5:5;
 Turner NC, et al. N Engl J Med. 2023;388:2058–2070 (Supplementary Appendix);
 Bidard FC, et al. J Clin Oncol. 2022;40:3246–3256;
 O'Shaughnessy J, et al. JAMA Netw Open. 2021;4:e214103;
 O'Shaughnessy J, et al. N Engl J Med. 2022;387:9–20

Targeting 'low' and 'ultralow' HER2-expressing tumors in mBC

ASCO/CAP, American Society of Clinical Oncology / College of American Pathologists; HER2, human epidermal growth factor receptor 2; HR+, hormone receptor–positive; IHC, immunohistochemistry; ISH, in situ hybridization; mBC, metastatic breast cancer; T-DXd, trastuzumab deruxtecan

Images adapted from Venetis K, et al. Front Mol Biosci. 2022;9:834651. CC BY 4.0 license available from: https://creativecommons.org/licenses/by/4.0/

1. Wolff AC, et al. J Clin Oncol. 2023;41:3867–3872; 2. Denkert C, et al. Lancet Oncol. 2021;22:1151–1161; 3. Chen Z, et al. Breast Cancer Res Treat. 2023;202:313–323; 4. Mehta S, et al. J Clin Oncol. 2024;42(Suppl. 16):Abstract e13156

Study design

DESTINY-Breast06: a Phase 3, randomized, multicenter, open-label study (NCT04494425)

• Prior taxane in the non-metastatic setting (yes vs no)

*Study enrollment was based on central HER2 testing. HER2 status was determined based on the most recent evaluable HER2 IHC sample prior to randomization. HER2-ultralow was defined as faint, partial membrane staining in <10% of tumor cells (also known as IHC >0<1+); [†]HER2-ultralow status as determined per IRT data (note: efficacy analyses in the HER2-ultralow subgroup were based on n=152 as determined per central laboratory testing data); [‡]to be presented separately BICR, blinded independent central review; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; DOR, duration of response; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; HR+, hormone receptor–positive; IHC, immunohistochemistry; INV, investigator assessed; IRT, interactive response technology; ISH, in situ hybridization; ITT, intent-to-treat; mBC, metastatic breast cancer; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; Q3W, every 3 weeks; R, randomization; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice NCT04494425. Updated. April 12, 2024. Available from: https://clinicaltrials.gov/study/NCT04494425 (Accessed May 13, 2024)

At DCO, 119 patients (14.0%) remained on treatment: 89 (20.5%) T-DXd and 30 (7.2%) TPC Median duration of follow up: 18.2 months (ITT)

Patient demographics and key baseline characteristics

	HER2-low*		ITT (HER2-low and HER2-ultralow)		HER2-u	ltralow*
	T-DXd (n=359)	TPC (n=354)	T-DXd (n=436)	TPC (n=430)	T-DXd (n=76)	TPC (n=76)
Age, median (range), years	58.0 (28–87)	57.0 (32–83)	58.0 (28–87)	57.0 (32–83)	58.0 (33–85)	57.5 (34–82)
Female, n (%)	359 (100)	353 (99.7)	436 (100)	429 (99.8)	76 (100)	76 (100)
ECOG PS at screening, n (%) [†]						
0	207 (57.7)	218 (61.6)	252 (57.8)	257 (59.8)	44 (57.9)	39 (51.3)
1	148 (41.2)	128 (36.2)	178 (40.8)	163 (37.9)	30 (39.5)	35 (46.1)
HER2 status, n (%) [‡]						
IHC 0 with membrane staining (HER2-ultralow)	-	-	76 (17.4)	76 (17.7)	76 (100)	76 (100)
IHC 1+ (HER2-low)	238 (66.3)	234 (66.1)	239 (54.8)	234 (54.4)	-	-
IHC 2+/ISH- (HER2-low)	117 (32.6)	118 (33.3)	117 (26.8)	118 (27.4)	-	-
ER/PR status, n (%)§						
ER+/PR+	206 (57.4)	193 (54.5)	253 (58.0)	237 (55.1)	46 (60.5)	44 (57.9)
ER+/PR-	141 (39.3)	152 (42.9)	167 (38.3)	181 (42.1)	26 (34.2)	29 (38.2)
ER-/PR+	3 (0.8)	2 (0.6)	3 (0.7)	2 (0.5)	-	-
Primary endocrine resistance [¶]	105 (29.2)	116 (32.8)	128 (29.4)	140 (32.6)	23 (30.3)	24 (31.6)
De-novo disease at diagnosis, n (%)	111 (30.9)	104 (29.4)	133 (30.5)	132 (30.7)	22 (28.9)	28 (36.8)
Bone-only disease at baseline, n (%)	11 (3.1)	10 (2.8)	13 (3.0)	13 (3.0)	2 (2.6)	3 (3.9)
Visceral disease at baseline, n (%)	309 (86.1)	299 (84.5)	376 (86.2)	364 (84.7)	66 (86.8)	65 (85.5)
Liver metastases at baseline, n (%)	243 (67.7)	232 (65.5)	296 (67.9)	283 (65.8)	52 (68.4)	51 (67.1)

*HER2-low status defined at randomization per IRT data, and HER2-ultralow status defined per central laboratory testing data. With mis-stratification, the combined sample size of these two populations may not match the ITT total; [†]n=14 patients had missing ECOG PS status at baseline; [‡]n=2 patients in the ITT (1 per treatment group) were found to have HER2 IHC 0 with absent membrane staining per central laboratory testing; [§]patients with ER-/PR- status were excluded from the study; however, n=1 patient with ER-/PR- status was randomized in error; [¶]defined as relapse while on the first 2 years of adjuvant endocrine therapy, or progressive disease within the first 6 months of first-line endocrine therapy for metastatic breast cancer; ECOG PS, Eastern Cooperative Oncology Group performance status; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; IRT, interactive response technology; ISH, in situ hybridization; ITT, intent-to-treat; PR, progesterone receptor; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

Prior therapies

	HER2-low*		ا HER2-low and)	ITT (HER2-low and HER2-ultralow)		HER2-ultralow*	
	T-DXd (n=359)	TPC (n=354)	T-DXd (n=436)	TPC (n=430)		T-DXd (n=76)	TPC (n=76)
ET in the metastatic setting							
Lines of ET							
Number of lines, median (range)	2.0 (1–4)	2.0 (1–5)	2.0 (1–4)	2.0 (1–5)		2.0 (1–4)	2.0 (1–5)
Number of lines, n (%)							
1	54 (15.1)	67 (19.0)	65 (14.9)	82 (19.2)		11 (14.5)	15 (19.7)
≤6 months on first-line ET + CDK4/6i	33 (9.2)	33 (9.4)	37 (8.5)	40 (9.3)		4 (5.3)	7 (9.2)
2	242 (67.6)	236 (67.0)	295 (67.8)	288 (67.3)		52 (68.4)	52 (68.4)
≥3	62 (17.3)	49 (13.9)	75 (17.2)	58 (13.6)		13 (17.1)	9 (11.8)
Prior therapies, n (%)							
ET monotherapy	189 (52.6)	183 (51.7)	230 (52.8)	223 (51.9)		41 (53.9)	40 (52.6)
ET with CDK4/6i	318 (88.6)	316 (89.3)	388 (89.0)	385 (89.5)		69 (90.8)	69 (90.8)
ET with other targeted therapy [†]	120 (33.4)	105 (29.7)	143 (32.8)	127 (29.5)		22 (28.9)	22 (28.9)
Adjuvant/neoadjuvant setting [‡]							
Prior therapies, n (%)							
ET	227 (63.2)	218 (61.6)	275 (63.1)	256 (59.5)		48 (63.2)	38 (50.0)
Cytotoxic chemotherapy	192 (53.5)	196 (55.4)	228 (52.3)	234 (54.4)		36 (47.4)	38 (50.0)
Taxane	151 (42.1)	151 (42.7)	179 (41.1)	177 (41.2)		28 (36.8)	26 (34.2)
Anthracycline	167 (46.5)	173 (48.9)	197 (45.2)	206 (47.9)		30 (39.5)	33 (43.4)

*HER2-low status defined at randomization per IRT data, and HER2-ultralow status defined per central laboratory testing data; [†]other targeted therapies were mTORi (23.8%), PI3Ki (4.2%), or PARPi (0.9%) in the ITT; [‡]approximately 30% of the patient population had de-novo metastatic disease and were not included in this category

CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; IRT, interactive response technology; ISH, in situ hybridization; ITT, intent-to-treat; mTORi, mammalian target of rapamycin inhibitor; PARPi, poly-adenosine diphosphate ribose polymerase inhibitor; PI3Ki, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha inhibitor; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

PFS (BICR) in HER2-low: primary endpoint

T-DXd demonstrated a statistically significant and clinically meaningful improvement in PFS compared with standard-of-care chemotherapy in HER2-low

*P-value of <0.05 required for statistical significance

BICR, blinded independent central review; CI, confidence interval; HER2, human epidermal growth factor receptor 2; mo, months; (m)PFS, (median) progression-free survival; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

PFS (BICR) in ITT: key secondary endpoint

T-DXd demonstrated a statistically significant and clinically meaningful improvement in PFS compared with standard-of-care chemotherapy in ITT

*P-value of <0.015 required for statistical significance

BICR, blinded independent central review; CI, confidence interval; ITT, intent-to-treat; mo, months; (m)PFS, (median) progression-free survival; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

OS in HER2-low and ITT: key secondary endpoints (~40% maturity)

*39.6% maturity (of total N for population) at this first interim analysis; median duration of follow up was 18.6 months (HER2-low); [†]P-value of <0.0046 required for statistical significance; [‡]no test of significance was performed in line with the multiple testing procedure; median duration of follow up was 18.2 months (ITT)

CI, confidence interval; HER2, human epidermal growth factor receptor 2; ITT, intent-to-treat; OS, overall survival; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

PFS and OS in HER2-ultralow: prespecified exploratory analyses

PFS improvement with T-DXd vs TPC in HER2-ultralow was consistent with results in HER2-low

*34.9% maturity (of total N for population) at this first interim analysis; median duration of follow up was 16.8 months

BICR, blinded independent central review; CI, confidence interval; HER2, human epidermal growth factor receptor 2; OS, overall survival; mo, months; (m)PFS, (median) progression-free survival; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

PFS (BICR) in HER2-low: subgroup analysis

	No. of events /	no. of patients	mPFS (95%	CI), months		
	T-DXd	TPC	T-DXd	TPC	Hazard ratio (9	95% CI)
Age					1	
<65 years	158/252	157/244	13.2 (11.2–15.2)	7.8 (6.9-8.6)	⊢ ●	0.59 (0.47-0.74)
≥65 years	67/107	75/110	13.2 (9.7–17.0)	8.5 (6.9–11.5)	⊢ − −−¦	0.68 (0.49–0.95)
HER2 status*						
IHC 1+	157/238	150/234	12.9 (11.0–15.2)	8.2 (7.1–9.8)	H O H	0.74 (0.59–0.93)
IHC 2+/ISH-	65/117	80/118	15.2 (12.2–21.4)	7.0 (6.2–8.4)		0.43 (0.31–0.60)
Prior CDK4/6i			, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,
Yes	206/324	212/320	13.1 (11.2–15.2)	7.9 (6.9-8.6)	HOH H	0.61 (0.51–0.74)
No	19/35	20/34	16.1 (9.7–NE)	11.1 (6.9–20.6)		0.64 (0.34–1.21)
Prior taxane use (adjuvant/neoadjuvant setting)			(/ /			· · · · · ·
Yes	94/151	101/151	12.9 (9.7–14.0)	7.4 (6.3–9.3)	⊢−●− ↓	0.64 (0.48-0.85)
No	131/208	131/203	15.0 (11.3–16.5)	8.3 (7.0–9.7)	Here i	0.59 (0.46–0.76)
Number of prior lines of ET (metastatic setting)			(,			
1	27/54	45/67	15.2 (9.7–19.1)	8.0 (5.7-8.5)	⊢	0.45 (0.27-0.72)
2	158/242	153/236	13.1 (11.2–15.2)	8.3 (6.9–10.0)	⊢— →	0.69 (0.55–0.86)
≥3	39/62	33/49	12.3 (8.3–18.5)	8.1 (5.4–9.7)		0.53 (0.33–0.86)
Endocrine resistance			· · · · ·			(/ /
Primary	66/105	83/116	13.1 (10.0–15.2)	6.8 (5.3-8.1)	⊢● →	0.56 (0.40-0.78)
Secondary	159/254	148/236	13.2 (11.3–15.5)	9.0 (7.5–11.1)	H H H	0.65 (0.52-0.82)
Choice of chemotherapy [†]			(,		•	
Capecitabine	131/220	134/208	13.5 (11.4–15.4)	8.5 (7.0–11.4)	⊢ ●-4 [↓]	0.62 (0.49-0.79)
Taxanes (Nab-paclitaxel + paclitaxel)	94/139	98/146	12.9 (9.6–15.4)	7.3 (6.4-8.3)		0.62 (0.46-0.82)
Liver metastases			()	- ()	•	()
Yes	163/243	166/232	11.4 (9.8–13.2)	7.0 (6.4-8.1)		0.58 (0.46-0.72)
No	62/116	66/122	17.0 (15.0–19.4)	11.3 (8.2–14.8)		0.66 (0.46–0.93)
				- ()	· · · ·	

0.25

0.5

2

1

Favors T-DXd Favors TPC

Size of circle is proportional to the number of events

*Based on central laboratory data (ie the HER2 result from the most recent evaluable sample prior to randomization); †specified by the investigator prior to randomization BICR, blinded independent central review; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; CI, confidence interval; ET, endocrine therapy;

HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; (m)PFS, (median) progression-free survival;

NE, not evaluable; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

Antitumor activity

	HER2-low*		ΙΤΤ		HER2-ultralow*	
	T-DXd (n=359)	TPC (n=354)	T-DXd (n=436)	TPC (n=430)	T-DXd (n=76)	TPC (n=76)
Confirmed ORR, n (%)	203 (56.5)	114 (32.2)	250 (57.3)	134 (31.2)	47 (61.8)	20 (26.3)
Best overall response, n (%)						
Complete response	9 (2.5)	0	13 (3.0)	0	4 (5.3)	0
Partial response	194 (54.0)	114 (32.2)	237 (54.4)	134 (31.2)	43 (56.6)	20 (26.3)
Stable disease	125 (34.8)	170 (48.0)	148 (33.9)	212 (49.3)	22 (28.9)	42 (55.3)
Clinical benefit rate, n (%) [†]	275 (76.6)	190 (53.7)	334 (76.6)	223 (51.9)	58 (76.3)	33 (43.4)
Median duration of response, mo	14.1	8.6	14.3	8.6	14.3	14.1

ORR based on RECIST v1.1; response required confirmation after 4 weeks

*HER2-low status defined at randomization per IRT data, and HER2-ultralow status defined by central laboratory testing data; [†]defined as complete response + partial response + stable disease at Week 24, by blinded independent central review HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; IRT, interactive response technology; ITT, intent-to-treat; mo, months; ORR, objective response rate; RECIST, Response Evaluation Criteria in Solid Tumors; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

Overall safety summary

	Safety analysis set*	
	T-DXd (n=434)	TPC (n=417)
Total exposure, patient-years	438.5	263.5
Any TEAE, n (%)	429 (98.8)	397 (95.2)
Treatment-related TEAEs, n (%) Grade ≥3	417 (96.1) 176 (40.6)	373 (89.4) 131 (31.4)
Serious TEAEs, n (%)	88 (20.3)	67 (16.1)
TEAEs associated with treatment discontinuation, n (%)	62 (14.3)	39 (9.4)
TEAEs associated with dose interruptions, n (%)	210 (48.4)	160 (38.4)
TEAEs associated with dose reductions, n (%)	107 (24.7)	161 (38.6)
TEAEs leading to death, n (%) Treatment related (investigator assessed) [‡]	11 (2.5) 5 (1.2)	6 (1.4) 0

Daiichi-Sankyo

- Median treatment duration:
 - T-DXd: 11.0 mo (range 0.4–39.6)
 - TPC: 5.6 mo (range 0.1-35.9)
- Most common TEAE associated with treatment discontinuation:
 - T-DXd: 5.3%, pneumonitis[†]
 - TPC: 1.4%, peripheral sensory neuropathy
- Most common TEAE associated with dose reduction:
 - T-DXd: 4.4%, nausea
 - TPC: 16.5%, PPE

mo, months; PPE, palmar-plantar erythrodysesthesia; T-DXd, trastuzumab deruxtecan; TEAE, treatment-emergent adverse event; TPC, chemotherapy treatment of physician's choice

^{*}Safety analyses included all patients who received at least one dose of study treatment; †in the T-DXd group, 3.5% of patients discontinued due to interstitial lung disease; ‡reasons were interstitial lung disease (n=2), sepsis (n=1), neutropenic sepsis (n=1) and general physical health deterioration (n=1)

Drug-related TEAEs in ≥20% of patients (either treatment group)

*Includes the preferred terms fatigue, asthenia, malaise, and lethargy; [†]includes the preferred terms neutrophil count decreased and neutropenia; [‡]includes the preferred terms transaminases increased, aspartate aminotransferase increased, gamma-glutamyltransferase increased, liver function test abnormal, hepatic function abnormal, and liver function test increased; [§]includes the preferred terms hemoglobin decreased, red blood cell count decreased, anemia, and hematocrit decreased; [¶]includes the preferred terms white blood cell count decreased and leukopenia

PPE, palmar-plantar erythrodysesthesia; T-DXd, trastuzumab deruxtecan; TEAE, treatment-emergent adverse event; TPC, chemotherapy treatment of physician's choice

Adverse events of special interest

Adjudicated as drug-related interstitial lung disease / pneumonitis*						
n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade
T-DXd (n=434)	7 (1.6)	36 (8.3)	3 (0.7)	0	3 (0.7)	49 (11.3)
TPC (n=417)	0	1 (0.2)	0	0	0	1 (0.2)

Left ventricular dysfunction⁺

n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade
Ejection fraction	n decreased					
T-DXd (n=434)	1 (0.2)	31 (7.1)	3 (0.7)	0	0	35 (8.1)
TPC (n=417)	0	11 (2.6)	1 (0.2)	0	0	12 (2.9)
Cardiac failure						
T-DXd (n=434)	0	0	0	0	0	0
TPC (n=417)	0	1 (0.2)	1 (0.2)	1 (0.2)	0	3 (0.7)

*Grouped term. Median time to first onset of interstitial lung disease / pneumonitis for patients with T-DXd was 141 days (range 37–835). No pending cases of drug-related interstitial lung disease / pneumonitis to be adjudicated. One interstitial lung disease_related death per investigator assessment was upheld by the adjudication committee. An additional two deaths were adjudicated as interstitial lung disease_related by the adjudication committee; [†]data for the most common preferred terms are shown on the slide; additionally, one patient in each treatment group had the preferred term left ventricular dysfunction (Grade 3 with T-DXd, Grade 2 with TPC) T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

28

Conclusions

- T-DXd demonstrated a statistically significant and clinically meaningful PFS benefit vs TPC (chemotherapy) in HR+, HER2-low mBC in an earlier line of treatment than DESTINY-Breast04
- Results in HER2-ultralow were consistent with HER2-low
- Confirmed ORR was 57.3% (T-DXd) vs 31.2% (TPC) in ITT
- No new safety signals were identified; interstitial lung disease remains an important safety risk of T-DXd

DESTINY-Breast06 establishes T-DXd as an effective new treatment option for patients with HR+, HER2-low and HER2-ultralow mBC following ≥1 endocrine-based therapy

HER2, human epidermal growth factor receptor 2; HR+, hormone receptor-positive; ITT, intent-to-treat; mBC, metastatic breast cancer; mo, months; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

Poster #1025 Trastuzumab Deruxtecan Versus Trastuzumab Emtansine in Patients With HER2-Positive Metastatic Breast Cancer: Updated Survival Results of DESTINY-Breast03

Erika Hamilton,¹ Sara A. Hurvitz,² Seock-Ah Im,³ Hiroji Iwata,⁴ Giuseppe Curigliano,^{5,6} Sung-Bae Kim,⁷ Joanne W. Y. Chiu,⁸ Jose L. Pedrini,⁹ Wei Li,¹⁰ Kan Yonemori,¹¹ Giampaolo Bianchini,¹² Sherene Loi,¹³ Giuliano S. Borges,¹⁴ Xian Wang,¹⁵ Thomas Bachelot,¹⁶ Shunsuke Nakatani,¹⁷ Shahid Ashfaque,¹⁸ Zhengkang Liang,¹⁸ Anton Egorov,¹⁹ Javier Cortés²⁰

¹Sarah Cannon Research Institute, Nashville, TN, USA; ²University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA; ³Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; ⁴Aichi Cancer Center Hospital, Nagoya, Japan; ⁵European Institute of Oncology, IRCCS, Milan, Italy; ⁶University of Milano, Milan, Italy; ⁷Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁸University of Hong Kong, Hong Kong, China; ⁹Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil; ¹⁰The First Hospital of Jilin University, Changchun, China; ¹¹National Cancer Center Hospital, Tokyo, Japan; ¹²IRCCS San Raffaele Hospital and Università Vita-Salute San Raffaele, Milan, Italy; ¹³Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; ¹⁴Catarina Pesquisa Clínica -Clínica de Neoplasias Litoral, Itajaí, Brazil; ¹⁵Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China; ¹⁶Centre Léon Bérard, Lyon, France; ¹⁷Daiichi Sankyo Co, Ltd., Tokyo, Japan; ¹⁸Daiichi Sankyo, Inc., Basking Ridge, NJ, USA; ¹⁹Daiichi Sankyo, Inc., Rueil-Malmaison, France; ²⁰International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, and IOB Madrid, Hospital Beata Maria Ana, and Universidad Europea de Madrid, Madrid, Spain

No. of patients still at risk

T-DXd 5.4 mg/kg 261 257 255 250 244 239 236 231 219 212 202 198 188 182 178 173 169 163 162 156 151 143 115 91 60 40 32 15 6 4 1 (n = 261)

T-DM1 3.6 mg/kg 263 253 244 238 233 225 213 201 193 185 175 170 167 157 151 146 140 134 130 128 121 100 85 63 45 33 21 10 5 2 1 (n = 263)

Table 2. Overall Safety Summary

n (%)	T-DXd n = 257ª	T-DM1 n = 261ª
Any drug-related TEAEs	252 (98.1)	228 (87.4)
Drug-related grade ≥3 TEAEs	125 (48.6)	111 (42.5)
Serious drug-related TEAEs	35 (13.6)	20 (7.7)
Drug-related TEAEs associated with drug interruption	113 (44.0)	48 (18.4)
Drug-related TEAEs associated with dose reduction	72 (28.0)	40 (15.3)
Drug-related TEAEs associated with discontinuation	58 (22.6)	19 (7.3)
Drug-related TEAEs associated with an outcome of death	0	0

^aIncludes all randomized patients who received at least 1 dose of study treatment.

Table 3. Adjudicated Drug-Related ILD/Pneumonitis

Adjudicated drug-related ILD/pneumonitis events for the entire study period through November 20, 2023 (DCO)

n (%)ª	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade
T-DXd (n = 257) ^b	11 (4.3)	30 (11.7)	2 (0.8)	0	0	43 (16.7)
T-DM1 (n = 261)⁵	5 (1.9)	3 (1.1)	1 (0.4)	0	0	9 (3.4)

^aGrade is based on the worst CTCAE grade within the same AE/ILD event.

^bIncludes all randomized patients who received at least 1 dose of study treatment.

DESTINY-Breast07: dose-expansion analysis of T-DXd monotherapy and T-DXd + pertuzumab in patients with previously untreated HER2+ mBC

Fabrice André

Gustave Roussy, Paris-Saclay University, Villejuif, France

Additional authors: Erika Hamilton, Sherene Loi, Carey Anders, Peter Schmid, Daniil Stroyakovskiy, Rafael Villanueva-Vázquez, José Pedrini, Dinesh Chandra Doval, Bogdan Żurawski, Shin-Cheh Chen, Sarice Boston, Adam Konpa, Barbara Pierotti, Giulia Fabbri, Komal Jhaveri

Study background and rationale

Daiichi-Sankyo

- HER2+ breast cancer occurs in up to approximately 20% of primary breast cancers^{1,2}
- The current first-line therapy for HER2+ mBC is THP based on the CLEOPATRA study, which reported a median PFS of 18.7 months^{3,4}
- T-DXd monotherapy has demonstrated impressive efficacy in HER2+ mBC and is approved for adult patients with HER2+ advanced/mBC progressing after trastuzumab and taxanes, based on the results from DESTINY-Breast03^{5–8}
- DESTINY-Breast07 is a Phase 1b/2, multicenter, open-label, modular study exploring the safety, tolerability, and antitumor activity of T-DXd alone or in combination with other anticancer agents in patients with HER2+ mBC who have received no prior therapy in the metastatic setting (NCT04538742; Part 2, Modules 0–5)
- These results are from an interim analysis of the dose-expansion phase, assessing T-DXd alone and in combination with pertuzumab as first-line treatment in HER2+ mBC

HER2+, human epidermal growth factor receptor 2-positive; mBC, metastatic breast cancer; PFS, progression-free survival; T-DXd, trastuzumab deruxtecan; THP, taxane, trastuzumab, and pertuzumab 1. Wolff AC, et al. *J Clin Oncol.* 2013;31:3997–4013; 2. Morales S, et al. *Cancers (Basel).* 2021;13:5771; 3. Giordano SH, et al. *J Clin Oncol.* 2022;40:2612–2635; 4. Swain SM, et al. *Lancet Oncol.* 2020;21:519–530; 5. Modi S, et al. *N Engl J Med.* 2020;382:610–621; 6. Cortés J, et al. *N Engl J Med.* 2022;386:1143–1154; 7. André F, et al. *Lancet.* 2023;401:1773–1785; 8. Enhertu (fam-trastuzumab deruxtecan-nxki): highlights of prescribing information. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761139s021lbl.pdf (Accessed March 18, 2024)

Study design

DESTINY-Breast07: a Phase 1b/2, multicenter, open-label, two-part, modular study (NCT04538742)

PATIENT POPULATION

- Locally assessed HER2+ (IHC 3+, IHC 2+/ISH+) advanced/mBC, with measurable disease per RECIST 1.1
- Either no brain metastases or previously treated stable brain metastases
- ECOG PS of 0 or 1

Prior lines of therapy

- No prior therapy for mBC was allowed
- A disease-free interval of ≥12 months from adjuvant HER2-directed therapy or chemotherapy was required
- Prior taxane, trastuzumab, and pertuzumab exposure was allowed in the (neo)adjuvant setting

Module 0: T-DXd monotherapy (n=75) **Endpoints for the Part 2** Randomized (T-DXd 5.4 mg/kg IV Q3W)* dose-expansion phase Primary Safety and tolerability, Module 1: T-DXd + durvalumab including AEs and SAEs Key secondary ORR, PFS (evaluated by Module 2: T-DXd + pertuzumab (n=50) investigator per Stratification factors (T-DXd 5.4 mg/kg IV Q3W + pertuzumab 420 mg IV Q3W, RECIST 1.1), and DOR with an 840-mg loading dose)[†] HR status Disease status DCO: December 22, 2023[‡] PD-L1 status

This is the first dataset of T-DXd monotherapy and

T-DXd + pertuzumab as first-line treatment for HER2+ mBC

Results reported here are from an interim analysis of the Part 2 dose-expansion phase for Modules 0 and 2 only; the Part 1 dose-finding phase of the study has been described previously¹

*Patients in Module 0 received the approved T-DXd dose for HER2+ breast cancer; [†]patients received the RP2D from the study's dose-finding phase; [‡]the corresponding abstract reported data from the August 1, 2023, DCO AE, adverse event; DCO, data cutoff; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor 2; HER2+, human epidermal growth factor receptor 2–positive; HR, hormone receptor; IHC, immunohistochemistry; ISH+, in situ hybridization–positive; IV, intravenous; mBC, metastatic breast cancer; ORR, objective response rate; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; Q3W, every 3 weeks; RECIST 1.1, Response Evaluation Criteria in Solid Tumours version 1.1; RP2D, recommended Phase 2 dose; SAE, serious adverse event; T-DXd, trastuzumab deruxtecan 1. André F, et al. Poster presented at ASCO 2022 (Abstract 3025)

Baseline characteristics

\bigcirc
Daiichi-Sankyo

	T-DXd monotherapy (n=75)	T-DXd + pertuzumab (n=50)	
Median age, years (range)	57.0 (33.0–80.0)	56.5 (24.0–75.0)	
Female, n (%)	74 (98.7)*	50 (100)	
Race, n (%)			
White	52 (69.3)	37 (74.0)	
Asian	20 (26.7)	12 (24.0)	
Black or African American	2 (2.7)	0	
Not reported	1 (1.3)	0	
Other	0	1 (2.0)	
HER2 status, n (%)			
IHC 3+ ⁺	60 (80.0)	41 (82.0)	
IHC 2+/ISH+	14 (18.7)	9 (18.0)	
IHC 2+	1 (1.3)	0	
HR status, n (%)			
Positive [‡]	47 (62.7)	34 (68.0)	n
Negative	28 (37.3)	16 (32.0)	
Disease status, n (%)			
Recurrent [§]	27 (36.0)	20 (40.0)	
De novo [¶]	48 (64.0)	30 (60.0)	-
ECOG PS, n (%)			
0	49 (65.3)	37 (74.0)	
1	26 (34.7)	13 (26.0)	

Prior HER2-directed therapy in patients with recurrent mBC

n (%)	T-DXd monotherapy (n=27)	T-DXd + pertuzumab (n=20)
Trastuzumab	14 (51.9)	13 (65.0)
Pertuzumab	4 (14.8)	2 (10.0)
T-DM1	2 (7.4)	0

DCO was December 22, 2023

*Male, n=1; [†]regardless of ISH status; [‡]defined as ER- and/or PR-positive (ER or PR ≥1%); [§]defined as previously treated in the (neo)adjuvant setting with chemotherapy, HER2-directed agents, or endocrine therapy and includes previously treated HER2-negative patients who now have HER2-positive disease in the metastatic setting; [¶]defined as no prior systemic therapy in the (neo)adjuvant setting with chemotherapy, HER2-directed agents, or endocrine therapy DCO, data cutoff; ECOG PS, Eastern Cooperative Oncology Group performance status; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IHC, immunohistochemistry; ISH, in situ hybridization; ISH+, in situ hybridization–positive; mBC, metastatic breast cancer; PR, progesterone receptor; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan

Patient disposition

	T-DXd monotherapy (n=75)	T-DXd + pertuzumab (n=50)	
Median duration of follow up, months	23.9	25.3	
Ongoing study treatment, n (%)	47 (62.7)	28 (56.0)	
Discontinued treatment, n (%)	28 (37.3)	22 (44.0)	
Objective disease progression	10 (13.3)	8 (16.0)	
Adverse event	7 (9.3)	9 (18.0)	
Withdrawal by patient	6 (8.0)	2 (4.0)	
Other	5 (6.7)	3 (6.0)	
Death*	2 (2.7)	1 (2.0)	

DCO was December 22, 2023

*Includes death while on treatment with investigational product; investigators did not specifically record a reason for discontinuation of investigational product

DCO, data cutoff; T-DXd, trastuzumab deruxtecan

Response to treatment per RECIST 1.1 by investigator

Dashed reference line at -30% indicates the threshold for partial response

Responses are captured for patients with baseline data and at least one follow-up assessment

DCO was December 22, 2023. Median duration of follow up was 23.9 months for T-DXd monotherapy and 25.3 months for T-DXd + pertuzumab

*Patients had 0% change from baseline

CI, confidence interval; DCO, data cutoff; DOR, duration of response; NE, not evaluable; ORR, objective response rate; RECIST 1.1, Response Evaluation Criteria in Solid Tumours version 1.1; T-DXd, trastuzumab deruxtecan

Duration of response

Number of randomized patients / number of events

T-DXd monotherapy75 / 11T-DXd + pertuzumab50 / 7

DCO was December 22, 2023. Median duration of follow up was 23.9 months for T-DXd monotherapy and 25.3 months for T-DXd + pertuzumab CI, confidence interval; DCO, data cutoff; T-DXd, trastuzumab deruxtecan

cORR and BOR by subgroup per RECIST 1.1 by investigator

DCO was December 22, 2023

BOR, best overall response; CI, confidence interval; cORR, confirmed objective response rate; CR, complete response; DCO, data cutoff; HR, hormone receptor; NE, not evaluable; PD, progressive disease; PR, partial response; RECIST 1.1, Response Evaluation Criteria in Solid Tumours version 1.1; SD, stable disease; T-DXd, trastuzumab deruxtecan

Safety overview

	T-DXd monotherapy (n=75)	T-DXd + pertuzumab (n=50)	
Median actual treatment duration, months (range)*			
T-DXd	16.3 (0.7–30.9)	17.8 (0.9–30.7)	
Pertuzumab	N/A	17.6 (0.9–30.7)	74
Any AE, n (%)	75 (100)	50 (100)	/1
Any AEs Grade ≥3, n (%)	39 (52.0)	31 (62.0)	
AEs associated with drug interruptions of T-DXd, n (%)	44 (58.7)	32 (64.0)	
AEs associated with dose reduction of T-DXd, n (%)	12 (16.0)	8 (16.0)	
AEs associated with discontinuation of T-DXd, n (%) †	8 (10.7)	8 (16.0)	
Any SAEs, n (%)	13 (17.3)	13 (26.0)	
AEs leading to death, n (%)	1 (1.3) [‡]	0	
AESIs, n (%)			
Pneumonitis (adjudicated as ILD related to T-DXd)	7 (9.3)	7 (14.0)	
Grade 1	2 (2.7)	0	
Grade 2	5 (6.7)	6 (12.0)	
Grade 3	0	1 (2.0)	
LV dysfunction (possibly related to T-DXd)	5 (6.7)	2 (4.0)	

Any-grade AEs (>20% of patients in either module) with incidence of Grade ≥3 events

DCO was December 22, 2023

*Total treatment duration, excluding dose delays; †discontinuation of T-DXd due to toxicities resulted in the discontinuation of pertuzumab until resolved; ‡reported by investigator as non-treatment-related post-acute COVID-19 syndrome; §grouped term including neutropenia, decreased neutrophil count, and febrile neutropenia events

AE, adverse event; AESI, adverse event of special interest; AST, aspartate aminotransferase; COVID-19, coronavirus disease 2019; DCO, data cutoff; ILD, interstitial lung disease; LV, left ventricular; N/A, not applicable; SAE, serious adverse event; T-DXd, trastuzumab deruxtecan

Conclusions

- This is the first dataset of T-DXd monotherapy and T-DXd + pertuzumab as first-line treatment for HER2+ mBC
- T-DXd monotherapy (n=75) and T-DXd + pertuzumab (n=50) showed robust efficacy:
 - Confirmed ORR was 76.0% and 84.0% for T-DXd monotherapy and T-DXd + pertuzumab, respectively
 - Median DOR was not reached for T-DXd monotherapy or T-DXd + pertuzumab
 - PFS rate at 12 months was 80.8% and 89.4% for T-DXd monotherapy and T-DXd + pertuzumab, respectively; the number of PFS events was small and most patients were censored
- There are 62.7% and 56.0% of patients receiving ongoing study treatment, with a median duration of follow up of 23.9 months and 25.3 months, in the T-DXd monotherapy and T-DXd + pertuzumab modules, respectively
- Encouraging clinical activity was observed with T-DXd monotherapy and T-DXd + pertuzumab in first-line HER2+ mBC, irrespective of disease status and HR status
- The safety profiles of T-DXd and pertuzumab were consistent with their individual known profiles
 - The incidence of ILD/pneumonitis events was 9.3% and 14.0% in the T-DXd monotherapy and T-DXd + pertuzumab modules, respectively; there were no ILD/pneumonitis-related deaths in either module
- T-DXd monotherapy and T-DXd + pertuzumab are being evaluated versus THP, in patients with HER2+ mBC in the first-line setting, in the Phase 3 DESTINY-Breast09 clinical trial

DOR, duration of response; HER2+, human epidermal growth factor receptor 2-positive; HR, hormone receptor; mBC, metastatic breast cancer; ORR, objective response rate; PFS, progression-free survival; T-DXd, trastuzumab deruxtecan HER2+, human epidermal growth factor receptor 2-positive; ILD, interstitial lung disease; mBC, metastatic breast cancer; T-DXd, trastuzumab deruxtecan; THP, taxane, trastuzumab, and pertuzumab

Poster #8543 Trastuzumab Deruxtecan in Patients with *HER2*-Mutant Metastatic Non–Small Cell Lung Cancer: Final Analysis Results of DESTINY-Lung02

Pasi A. Jänne,¹ Yasushi Goto,² Toshio Kubo,³ Kiichiro Ninomiya,³ Sang-We Kim,⁴ David Planchard,⁵ Myung-Ju Ahn,⁶ Egbert Smit,⁷ Adrianus Johannes de Langen,⁷ Maurice Pérol,⁸ Elvire Pons-Tostivint,⁹ Silvia Novello,¹⁰ Hidetoshi Hayashi,¹¹ Junichi Shimizu,¹² Dong-Wan Kim,¹³ Kaline Pereira,¹⁴ Fu-Chih Cheng,¹⁴ Ayumi Taguchi,¹⁵ Yingkai Cheng,¹⁴ Kyle Dunton,¹⁶ Ahmed Ali,¹⁷ Koichi Goto¹⁸

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²National Cancer Center Hospital, Tokyo, Japan; ³Okayama University Hospital, Okayama, Japan;
 ⁴Asan Medical Center, Seoul, Republic of Korea; ⁵Gustave Roussy, Thoracic Group, Villejuif, and Paris-Saclay University, Paris, France;
 ⁶Samsung Medical Center, Seoul, Republic of Korea; ⁷Netherlands Cancer Institute, Amsterdam, Netherlands; ⁸Centre Léon Bérard, Lyon, France; ⁹Centre Hospitalier Universitaire de Nantes, Nantes Université, Nantes, France; ¹⁰University of Turin, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Turin, Italy;
 ¹¹Kindai University Hospital, Osaka, Japan; ¹²Aichi Cancer Center Hospital, Nagoya, Japan; ¹³Seoul National University Hospital, Seoul, Republic of Korea;
 ¹⁴Daiichi Sankyo, Inc., Basking Ridge, NJ, USA; ¹⁵Daiichi Sankyo, Tokyo, Japan; ¹⁶Daiichi Sankyo UK Ltd., Uxbridge, United Kingdom; ¹⁷Daiichi Sankyo Europe GmbH, Munich, Germany; ¹⁸National Cancer Center Hospital East, Kashiwa, Japan

Figure 1. DESTINY-Lung02 Study Design

^aPatients with stable brain metastases at baseline (asymptomatic; not requiring corticosteroid or anticonvulsant treatment) were eligible.

^bActivating *HER2* mutation documented from an archival or fresh tumor tissue sample by certified local laboratory assessment.

°1 patient randomly assigned to the T-DXd 5.4 mg/kg arm did not receive treatment because the patient discontinued due to COVID-19 before cycle 1 day 1.

Table 2. Summary of Efficacy Results of T-DXd

	T-DXd 5.4 mg/kg n = 102	T-DXd 6.4 mg/kg n = 50
cORR, ^{a,b} n (% [95% Cl])	51 (50.0 [39.9-60.1])	28 (56.0 [41.3-70.0])
CR	3 (2.9)	4 (8.0)
PR	48 (47.1)	24 (48.0)
SD	44 (43.1)	18 (36.0)
PD	4 (3.9)	2 (4.0)
Non-evaluable	3 (2.9)	2 (4.0)
DCR,º n (% [95% Cl])	95 (93.1 [86.4-97.2])	46 (92.0 [80.8-97.8])
DoR, ^b median (95% CI), months	12.6 (6.4 to NE)	12.2 (7.0 to NE)

Data cutoff: August 25, 2023.

^aProportion of patients with confirmed CR or PR. ^bAssessed by BICR per RECIST v1.1. ^cProportion of patients with confirmed CR, PR, or SD.

Figure 4. Kaplan-Meier Plot of OS in the T-DXd 5.4 mg/kg and 6.4 mg/kg Arms

Figure 5. Overall Safety Summary of the T-DXd 5.4 mg/kg and 6.4 mg/kg Arms

^aRandomly assigned patients who received ≥1 T-DXd dose. ^bThe cause of both deaths was adjudicated drug-related ILD/pneumonitis.

Poster #8617 Datopotamab deruxtecan (Dato-DXd) plus pembrolizumab with or without platinum chemotherapy as first-line therapy for advanced non-small cell lung cancer (NSCLC); subgroup analysis from TROPION-Lung02

Benjamin Levy,¹ Luis Paz Ares,² Wu Chou Su,³ Scott Herbert,⁴ Tsung Ying Yang,⁵ Anthony Tolcher,⁶ Yanyan Lou,⁷ Yoshitaka Zenke,⁸ Diego Cortinovis,⁹ Enriqueta Felip,¹⁰ Manuel Domine,¹¹ Konstantinos Leventakos,¹² Emiliano Calvo,¹³ Atsushi Horiike,¹⁴ Edward Pan,¹⁵ Daisy Lin,¹⁵ Xiaoyu Jia,¹⁵ Priyanka Basak,¹⁵ Michael J. Chisamore,¹⁶ Yasushi Goto¹⁷

¹The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine, Baltimore, MD, USA; ²Hospital Universitario 12 de Octubre, CNIO-H12O Lung Cancer Unit, Universidad Complutense & CiberOnc, Madrid, Spain; ³Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; ⁴Quantum, Santa Fe, NM, USA; ⁵Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; ⁶NEXT Oncology, San Antonio, TX, USA; ⁷Mayo Clinic, Jacksonville, FL, USA; ⁸Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ⁹Università degli Studi di Milano-Bicocca, Monza, Italy; ¹⁰Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹¹Department of Oncology, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; ¹²Mayo Clinic, Rochester, MN, USA; ¹³START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain; ¹⁴Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; ¹⁵Daiichi Sankyo, Inc., Basking Ridge, NJ, USA; ¹⁶Merck & Co., Inc., Rahway, NJ, USA; ¹⁷National Cancer Center Hospital, Tokyo, Japan

Daiichi-Sankyo

Key eligibility criteria

- Advanced/metastatic NSCLC
- Dose escalation^b: ≤2 lines of prior therapy^c
- Dose expansion
 - ≤1 line of platinum CT (cohorts 1 and 2)^c
 - Treatment-naive (cohort 2; enrollment after Jun 30, 2022)^c
 - Treatment-naïve (cohorts 3-6)^c

Data cutoff: October 31, 2023.

^aPatients with known actionable genomic alterations in EG*FR, ALK, ROS1, NTRK, BRAF, RET, or MET,* or with alterations in other actionable oncogenic driver kinases were not eligible for this study. ^bThe first 3 to 6 patients in each cohort were enrolled to confirm acceptable safety/DLT rate; the remaining patients are considered part of dose expansion (for which enrollment was ongoing at the time of data cutoff). ^cPrior therapy requirements are for treatment in the advanced/metastatic setting.

Demographics and baseline characteristics of 1L patients

	Doublet (n=42)	Triplet (n=54)	
Age, median (range), years	66 (49–83)	66 (35–80)	• Prin
Male , n (%)	32 (76)	34 (63)	
Asian race, n (%)	31 (74)	23 (43)	
Histology, n (%)			
Adenocarcinoma	31 (74)	35 (65)	• Sec
Squamous	9 (21)	12 (22)	effic
Stage at study entry, n (%)			anti
IIIB	1 (2)	0	anti
IIIC	0	1 (2)	
IV	2 (5)	8 (15)	
IVA	22 (52)	25 (46)	
IVB	17 (41)	20 (37)	
History of brain metastases, n (%)	4 (10)	10 (19)	
ECOG PS 1, n (%)	24 (57)	33 (61)	
PD-L1 expression ^a , n (%)			
<1%	18 (43)	16 (30)	
1–49%	19 (45)	23 (43)	
≥50%	5 (12)	15 (28)	

Primary objectives: safety and tolerability

• Secondary objectives: efficacy, PK, and antidrug antibodies

^aEvaluated locally by tumor proportion score using immunohistochemistry (22C3 assay).

Efficacy outcomes in 1L patients, overall and by PD-L1 status^{a,b}

	All (n=	1L :96)	1L PD-L1 <1% (n=34)		1L PD-L1 1–49% (n=42)		1L PD-L1 ≥50% (n=20)	
	Doublet (n=42)	Triplet (n=54)	Doublet (n=18)	Triplet (n=16)	Doublet (n=19)	Triplet (n=23)	Doublet (n=5)	Triplet (n=15)
ORR , n (%)	22 (52)	30 (56)	8 (44)	5 (31)	9 (47)	17 (74)	5 (100)	8 (53)
[95% CI]	[36–68]	[41–69]	[22–69]	[11–59]	[24–71]	[52–90]	[48–100]	[27–79]
BOR , n (%)								
CR	1 (2)	1 (2)	1 (6)	0	0	1 (4)	0	0
PR	21 (50)	29 (54)	7 (39)	5 (31)	9 (47)	16 (70)	5 (100)	<mark>8 (</mark> 53)
SD	15 (36)	18 (33)	8 (44)	10 (63)	7 (37)	3 (13)	0	<mark>5 (</mark> 33)
PD	3 (7)	2 (4)	1 (6)	1 (6)	2 (11)	1 (4)	0	0
NE	2 (5)	4 (7)	1 (6)	0	1 (5)	2 (9)	0	2 (13)
DCR , n (%)	37 (88)	48 (89)	16 (89)	15 (94)	16 (84)	20 (87)	5 (100)	13 (87)
[95% CI]	[74–96]	[77–96]	[65–99]	[70–100]	[60–97]	[66–97]	[48–100]	[60–98]
Median TTR , months	1.4	1.4	1.4	1.5	1.5	1.4	1.4	1.5
[Range]	[1.2–7.0]	[1.2–9.6]	[1.2–6.9]	[1.2–9.6]	[1.2–7.0]	[1.2–7.0]	[1.3–2.8]	[1.2–8.3]
Median DoR , months	NE	12.9	NE	12.9	12.0	14.6	NE	18.1
[95% CI]	[9.7–NE]	[5.7–NE]	NE	[4.1–NE]	[4.2–NE]	[4.2–NE]	[5.5–NE]	[4.1–NE]

^aEvaluated locally by tumor proportion score using immunohistochemistry (22C3 assay). ^bResponses with confirmed CR/PR.

Safety summary of 1L patients

	Doublet	Triplet
Event, n (%)	(n=42)	(n=54)
Any TEAE ^a	40 (95)	54 (100)
Study treatment-related ^b	39 (93)	54 (100)
Any grade ≥3 TEAE	24 (57)	41 (76)
Study treatment-related ^b	14 (33)	30 (56)
Any serious TEAEs	16 <mark>(</mark> 38)	24 (44)
Study treatment-related ^b	5 (12)	12 (22)
TEAEs associated with:		
Dose reduction of any drug	9 (21)	10 (19)
Dose reduction of Dato-DXd	9 (21)	7 (13)
Discontinuation of any drug	12 <mark>(</mark> 29)	24 (44)
Discontinuation of Dato-DXd	12 (29)	21 (39)
Death	1 (2)	5 (9)

^aTEAEs were defined as AEs with a start or worsening date on or after the start of study treatment until 37 days after the end date of study treatment. ^bDrug-related TEAEs may be associated with any component of the study treatment: Dato-DXd, pembrolizumab, cisplatin, or carboplatin.

AESIs in 1L patients

	Doublet (n=42)		Triplet (n=54)	
AESI, n (%)	All grades	Grade 3	All grades	Grade 3
Oral mucositis/stomatitis	26 (62)	2 (5)	22 (41)	1 (2)
Adjudicated drug-related ILD/pneumonitis	10 (24)	2 (5)	14 (26)	1 (2)
Ocular surface events	9 (21)	1 (2)	16 (30)	2 (4)

Oral mucositis/stomatitis was the most common AESI and was predominantly grade 1/2

• There were no grade 4 or 5 events for any AESI, including adjudicated drug-related ILD/pneumonitis

2 R&D strategy

3 Highlights from ASCO 2024

Contact address regarding this material

Daiichi Sankyo Co., Ltd.

Corporate Communications Department

TEL: +81-3-6225-1125

Email: <u>DaiichiSankyoIR@daiichisankyo.co.jp</u>